К этой категории методов, как показано в табл. 3, относятся эколого-геологическое картографирование, функциональный анализ эколого-геологической обстановки (условий), эколого-геологическое прогнозирование и эколого-геологический мониторинг.
Эколого-геологическое картирование. Это основной метод исследования пространственного распределения объемов геологического пространства с различными эколого-геологическими условиями. Он основан на рациональном сочетании частных прямых или косвенных наземных методов точечного или линейного изучения параметровэколого-геологических условий и методов (площадной) экстраполяции этих данных. В качестве последних обычно используются аэрофотоматериалы и данные аэрогеофизических работ.
Эколого-геологическое картирование как специальный метод экологической геологии находится на стадии разработки. Одним из немногих нормативных документов, регламентирующим проведение эколого-геологических исследований, являются «Требования к геолого-экологическим исследованиям и картографированию. Масштабы 1:50 000-1:25 000», разработанные коллективом института ВСЕГИНГЕО(1990).
Эколого-геологическое картирование является самостоятельным и новым, специфическим видом геологических работ для получения информации о локальном и региональном состоянии эколого-геологических условий литосферы. Основными объектами исследований являются эколого-геологические системы и, прежде всего, литосферные их элементы — горные породы, почвы, подземные воды, геохимические и геофизические поля, геодинамические и другие современные процессы, происходящие в естественных и нарушенных условиях, а также литотехнические системы, влияющие на состояние и параметры верхних горизонтов литосферы, а через них — и на биоту, включая человека.
Данные по параметрам атмосферы и поверхностной гидросферы — объектах, изучаемых целенаправленно специальными организациями, вовлекаются по мере необходимости и в объемах, позволяющих решать конкретные эколого-геологические задачи.
В перспективе эколого-геологическая съемка как основной метод эколого-геологического картирования будет введена в качестве обязательного вида работ при осуществлении геологических съемочных работ. Сейчас же, когда принципы и методы эколого-геологического картирования не могут считаться разработанными, целесообразно, как предлагал ввести в действие пилотную программу cпециализированной эколого-геологической на первоочередных типовых полигонах для осуществления и отработки вопросов методики ее проведения.
Следует подчеркнуть еще один чрезвычайно важный момент — проведение эколого-геологической съемки требует очень высокого технического, экономического, а также специального кадрового обеспечения. Учитывая эти и ранее высказанные позиции, экологическую съемку как самостоятельный вид работ целесообразно начинать в плановом порядке в районах экологического бедствия, на интенсивно техногенно-нарушенных территориях промышленных и горно-добывающих комплексов, крупных промышленно-городских агломераций, на массивах интенсивного орошения и др. Проведение подобных специализированных исследований в таких районах и на полигонах с типичными, характерными особенностями эколого-геологических условий позволит решить принципиальные методологические и методические вопросы эколого-геологической съемки, разработать необходимые методические документы для ее проведения в рамках выполнения государственной геологической съемки.
При выполнении эколого-геологических исследований, в том числе и эколого-геологических съемочных работах, важно проследить, как справедливо отметил М.Б.Куринов (1997), всю цепочку причинно-следственных связей, характерных для эколого-геологической обстановки-системы от конкретного воздействия на геологический компонент природной среды до экологических последствий этого воздействия. Осуществление подобных исследований возможно при четко сформулированной целевой задаче, которая в конечном итоге и определяет необходимый комплекс применяемых методов, составляющих основу эколого-геологического картирования как специального метода экологической геологии.
Полученная в результате эколого-геологической съемки информация нуждается в обобщении и систематизации. Форма обобщения информации при этом может быть различной, но приоритет в настоящее время принадлежит специальным картографическим моделям эколого-геологическим картам.
Функциональный анализ эколого-геологической обстановки. Этот метод занимает среди специальных методов экологической геологии центральное место. Именно его реализация позволяет решить основную стратегическую задачу -произвести оценку современного состояния эколого-геологической системы, определить пути и способы достижения стабильного развития этой системы. Методология этого метода базируется на принципах, которые широко используются и в геологии, и в экологии — системном подходе, принципе историзма, принципе целостности объекта. Это позволяет реализовать системный подход при эколого-геологических исследованиях и объединить, рассмотреть с единых методологических позиций теоретические разработки и их практическую реализацию.
Проведение функционального анализа эколого-геологической обстановки предусматривает, по М.Б.Куринову, выполнение следующих операций:
- выделение и описание эколого-геологической обстановки-системы той или иной изучаемой территории, выявление конкретных причинно-следственных связей между подсистемными элементами, контролирующими эколого-геологическую обстановку;
- проведение оценки значимости экологических функций литосферы для социума и биологических объектов;
- составление пространственно-временного прогноза развития рассматриваемой системы при планируемых техногенных и ожидаемых природных воздействиях;
- определение принципа развития, а в случае необходимости и пути поддержания существования эколого-геологической обстановки-системы.
Подчеркнем еще раз, что под эколого-геологической обстановкой-системой понимается система, в которой подсистемные элементы — геологический компонент природной среды, источники воздействия (природные и техногенные) и экологическая мишень (объекты био-, социо- и даже техносферы) тесно связаны причинно-следственными прямыми и обратными связями. Отличием этой системы является то, что ее границы определяются в первую очередь экологическими последствиями, а функционирование ее предполагает трансформацию (природного или техногенного) воздействия через геологический компонент природной среды.
Ядром эколого-геологической обстановки-системы является геологический компонент природной среды. Поэтому вся совокупность причинно-следственных прямых и обратных связей между ним и остальными элементами системы формирует область, лежащую в сфере профессиональных интересов базовой науки — экологической геологии, обладающей достаточным теоретическим и методологическим аппаратом для геологического обоснования решения экологических проблем.
Развитие такой системы подчиняется, как показал М.Б.Куринов (1997), принципу эколого-системной эволюции. Этот общий принцип отражен на представленном графике (рис. 40). Хорошо видно, что экологические последствия воздействия оказывают непосредственное влияние не только на геологический компонент природной среды, но и на подсистему источников воздействия, коренным образом изменяющим состояние остальных подсистемных элементов.
Метод функционального анализа эколого-геологических систем должен использоваться на всех этапах эколого-геологических исследований. На первых из них он позволяет определить необходимый объем данных для построения информационной модели эколого-геологической обстановки-системы, осуществить «заказ» на получение специальной информации частными методами геологических наук, специальными методами экологической геологии, а также методами биологических, медицинских и других наук. Полученная информация требует специализированного классифицирования, свертывания, интерпретации, в результате которых могут быть поставлены новые конкретные задачи исследования, а при необходимости и оперативного применения корректирующих действий системами управления.
На последующих этапах эколого-геологических исследований применение функционального анализа эколого-геологической обстановки обусловлено тем, что одноразовые окончательные решения при решении экологических задач, как правило, невозможны. Необходим постоянный, периодический анализ пути развития эколого-геологических обстановок-систем, вновь проявляющихся и техногенных воздействий, новых формирующихся причинно-следственных связей между подсистемными компонентами, анализ их влияния на биоту.
При выполнении функционального анализа ГАГолодковская и М.Б.Куринов предложили обособлять три уровня эколого-геологических систем. Первый — элементарный уровень базируется на конкретном виде воздействия и формирующемся одномерном пространстве причинно-следственных связей. Например, в результате дорожного строительства происходит перехват поверхностного и подземного стока, подъем уровня грунтовых вод, заболачивание и подтопление территории, имеющие негативные экологические последствия — угнетение растительности, изменение биоценозов.
Второй уровень системы выделяется при формировании двух-трехмерного пространства причинно-следственных связей и характеризуется более сложной структурной организацией. В этом случае экологические последствия могут играть роль самостоятельного, наведенного источника воздействия на литосферу. Например, в случае подземного захоронения промышленных стоков в сейсмоактивных районах возможно возникновение наведенных землетрясений, которые могут вызвать разрушение инженерных сооружений с последующими экологическими последствиями. В этом случае фиксируемые цепочки причинно-следственных связей имеют более сложную структуру и могут иметь несколько уровней, взаимодействующих друг с другом.
Третий уровень — системы формируются на базе мощного, разнопланового источника воздействия и образуют сложноорганизованное пространство причинно-следственных связей. К таким системам, по М.Б.Куринову, относятся в первую очередь, крупные урбанизированные центры типа Москвы, районы действия горно-добывающих центров, промышленные центры металлургической, нефтеперерабатывающей, химической промышленности и т.п. Исследование подобных систем базируется на принципе декомпозиции, т.е. выделении в рамках системы более просто построенных относительно независимых подсистем, и применении системного анализа при характеристике взаимодействия отдельных подсистем между собой и эколого-геологической системы в целом.
В ходе функционального анализа эколого-геологической обстановки необходимо оценить роль значимости экологических функций литосферы для социальных и биологических объектов. Ресурсная ее функция обусловливает наличие и состояние ресурсной базы, которая определяет жизненный уровень таких объектов. В устойчивых эколого-геологических системах эволюция направлена в сторону специализации, наиболее эффективного использования ресурсов. Сокращение, преждевременное истощение ресурсной основы может приводить к деградации социально-экономических и биологических объектов, что и нередко наблюдалось в прошлом. Оценка ресурсной функции невозможна без учета эволюции состояния природных объектов по мере использования ресурсов. Объективные экономические критерии, применяемые для оценки ресурсов, необходимо коррелировать с точки зрения придания особого статуса ресурсам, являющимся жизненно важными для экологических систем, развитых на той или иной территории.
При функциональном анализе огромное внимание должно уделяться рассмотрению геодинамической функции литосферы, в частности ее изменению при техногенном воздействии. Именно им обусловлены наиболее быстро протекающие, так называемые антропогенные геологические процессы, многие из которых являются крайне опасными для биоты.
В качестве основного критерия, который можно использовать в ходе анализа для оценки значимости геодинамической экологической функции следует, по нашему мнению, принять наличие, характер проявления экзогенных и эндогенных процессов, их влияние на устойчивость литосферы, а как следствие — на устойчивость биоты.
В ходе проведения функционального анализа необходимо все время помнить, что одна из его задач — рассмотрение влияния условий жизни на физическое здоровье, психическое равновесие, возможность передачи этих качеств потомству и безопасность социальных и биологических объектов. Наличие таких условий контролируется как собственно геологическими факторами (природные аномалии геофизических и геохимических полей, геологические процессы и т.п.), так и техногенными факторами (химическое, радионуклидное, электромагнитное загрязнение и т.п.). Особую роль в последнее время приобрели техногенные факторы.
Оценка этой функции литосферы лежит в сфере соблюдения действующими и проектируемыми предприятиями принятых на уровне государства норм ПДК, ПДН или фоновых значений. В то же время следует подчеркнуть, что принятые нормы ПДК, ПДН ориентированы в общем случае преимущественно на человека и не учитывают интересы биологических объектов в целом. Все это требует уточнения существующих норм и их ориентирование на интересы биологических объектов.
Г.А.Голодковская и М.Б.Куринов (1999) в общую структуру информационного обеспечения функционального анализа эколого-геологической системы (рис. 41) включают данные о планах использования территории, принимаемых управляющих решениях, возможных сценариях развития экологической обстановки. Предложенная ими информационная система должна, по замыслу авторов, работать в интерактивном режиме. Выдавая готовую продукцию непосредственному пользователю, она позволяет вводить новые программы в дальнейшие исследования. В таком качестве функциональный анализ выступает как ключевой метод не только познания эколого-геологической системы, но и инструментом обоснования управления ее состоянием.
Эколого-геологическое моделирование. Содержание этого метода заключается в создании моделей состояния эколого-геологической системы той или иной территории и прогноза трансформации ее при реальных или возможных изменениях геологического компонента в процессе его взаимодействия с источниками воздействия как природными, так и техногенными. Конечная цель моделирования — прогнозная оценка последствий этих воздействий на литосферу и через нее — на
Моделирование является методом исследования практически любого научного направления. Требования к созданию при его реализации корректных моделей являются, по существу, общими. В то же время использование моделей в экологической геологии, учитывающих особенности проявления и изменения экологических функций литосферы, позволяет рассматривать моделирование в качестве специального метода этой науки.
В процессе эколого-геологического моделирования последовательно решаются, по М.Б.Куринову (1997), следующие группы задач:
- создание моделей состояния эколого-геологической ситуации (системы) той или иной территории;
- построение моделей прогноза изменения эколого-геологических условий при планируемых воздействиях;
- разработка и выбор модели оптимальной, устойчиво развивающейся эколого-геологической системы территории;
- корректировка постоянно действующей модели (ПДМ) устойчиво развивающейся эколого-геологической системы.
Метод эколого-геологического моделирования в равной мере может быть использован при изучении эколого-геологической системы разных типов: природных и природно-технических, реальных и идеальных. Он охватывает все многообразие эколого-геологических условий, обеспечивая создание моделей состояния (реальных) и прогноза (идеальных), и может характеризоваться как универсальный метод познания эколого-геологических систем. Характерной чертой метода является его био- и антропоцентрическая направленность — оценка воздействия «неживого» на «живое». Полученный в ходе его реализации результат требует своей экологической и социально-экономической оценки. Другими словами, метод моделирования позволяет оценить или предсказать эколого-геологическую ситуацию изучаемой территории или литосферного блока, но не дает оценки прямой экологической оптимальности этой ситуации.
Метод эколого-геологического моделирования является важным звеном эко-лого-геологического мониторинга и корректировки ПДМ. Эколого-геологическая модель действует в системе мониторинга постоянно, а не связана с решением разовой целевой задачи. Кроме того, следует учитывать, что ПДМ практически единственный и наиболее часто реализуемый способ совершенствования системы управления рационального природопользования.
В практике эколого-геологического моделирования применяются различные типы моделей: вербальные, знаковые (картографические), физические (аналоговые) и математические, т.е. комплекс традиционных методов моделирования. Выбор конкретного метода обусловливается спецификой информационной базы, задачами исследования, а также возможностями их финансирования.
В последние годы в связи с расширением возможностей вычислительной техники все большее распространение получает детерминированное и вероятностное моделирование с помощью ЭВМ. Детерминированные модели основаны на установленных функциональных связях между зависимыми переменными (функциями) и аргументами. В рамках детерминированного моделирования применяются методы конечных элементов, конечных разностей и др.
При моделировании многофакторных процессов в верхних горизонтах литосферы в связи с отсутствием строгих математических описаний этих процессов используется математический аппарат теории вероятностей и математической статистики. Статистические модели основаны на эмпирических данных и содержат, кроме переменных величин и констант, одну или несколько случайных величин различной природы, которые отражают случайные характеристики свойств объектов литосферы. В принципе любая детерминированная модель, используемая при эколого-геологическом мониторинге, становится вероятностной, если в нее вводится какая-либо случайная компонента, обусловленная не предсказуемой точно функцией многих переменных.
Особым, специальным видом моделирования в экологической геологии является создание моделей устойчиво развивающихся эколого-геологических систем территории. Такие модели относятся к классу ПДМ, параметры которых постоянно уточняются в ходе эколого-геологических исследований, как уточняются и эко-лого-геологические прогнозы.
Постоянно действующая эколого-геологическая модель — это система упорядоченно-взаимосвязанных, постоянно уточняющихся во времени и пространстве данных о состоянии эколого-геологических условий, трансформированная в логическое, картографическое или математическое изображение для прогнозирования и управления. Основным назначением ПДМ является перманентное решение эко-лого-геологических задач, связанных с оценкой изменения (как природно, так и техногенно обусловленного) литосферы и ее компонентов, а также эколого-геологическим прогнозом ее развития. Применение ПДМ обеспечивает упорядочение технологии сбора и обработки поступающей эколого-геологической информации на основе компьютерной техники. В связи с этим создание и использование -пока единственный и наиболее эффективный способ совершенствования системы управления в области рационального использования и охраны верхних горизонтов литосферы, решения всевозможных эколого-геологических проблем.
Г.А.Голодковская и М.Б.Куринов (1994) к базовым принципам разработки модели устойчиво развивающейся эколого-геологической системы отнесли следующие позиции:
- принцип целевого использования — природная среда должна использоваться на основе максимального раскрытия заложенных в ней полезных качеств. Выполнение этого принципа должно базироваться на предварительной оценке естественных ресурсов, включая экологические функции литосферы и их влияние на объекты социо- и техносферы;
- принцип приоритетов при выработке эколого-экономической концепции развития региона — использование того или иного компонента среды не должно приводить к угнетению, деградации, уничтожению природных объектов, имеющих более высокий ранг качества. К сожалению, при любой антропогенной деятельности существующие экологические системы испытывают потери; задача заключается в том, чтобы приобретения компенсировали утраты;
- принципы безопасности — техногенная, антропогенная деятельность при использовании геологического компонента природной среды не должна создавать экологически вредную, опасную для существования биоценозов и человека среду обитания или иметь долгосрочные экологические последствия. (Идеалистично требование сохранения всех естественных биоценозов на осваиваемых территориях, но определение допустимого уровня изменений геологического компонента природной среды при условии минимального экологического ущерба — задача весьма актуальная);
- принцип сохранения уровня комфортности — техногенная, антропогенная деятельность при формировании новой или трансформации старой эколого-геологиче-ской системы не должна снижать уровень комфортности среды обитания человека;
- принцип разумного компромисса — необходим поиск тонкой грани между техническими возможностями производства, антропогенным воздействием на биоценозы. Эта задача весьма деликатная и непростая, так как «качество жизни» населения — это социальная задача, которую решают не только специалисты в области геологии и экологии, но и политики, отстаивающие нередко свои конъюнктурные интересы.
Процесс создания модели оптимальной устойчиво развивающейся эколого-геологической системы является в принципе непрерывным. ГАГолодковская и М.Б.Куринов (1997) в нем условно выделяют три этапа. На первом из них определяются экологическая политика развития региона, режим использования конкретной территории. Решение этих вопросов лежит в области государственного администрирования. Подготовка же материалов для подобных решений должна включать рассмотрение и экологических проблем, связанных с возможными изменениями геологического компонента окружающей среды под воздействием природных причин и техногенеза.
Второй этап построения такой модели включает в себя описание, выработку словесного портрета модели, выявление основных параметров среды с точки зрения экономики, здоровья и комфорта населения, состояния биоценозов, с учетом демографических, энергетических аспектов, стандартов состояния окружающей среды, перспектив развития региона и интересов проживающих в нем граждан.
Третий этап — это этап объединения результатов исследования природной среды, техносферы, социосферы, биосферы, прогнозов изменения эколого-геологической ситуации, т.е. построение самой адаптивной модели оптимальной устойчиво развивающейся эколого-геологической системы. На начальном этапе схематизации информации она будет иметь основные черты, присущие структурным моделям, а на выходе должна, если это окажется возможным, трансформироваться в физическую, математическую модели. Построенная таким образом модель подлежит непрерывной корректировке, сопоставлению с развитием ситуационных отношений на моделируемой территории.
Проблема корректировки прогностической модели оптимальной устойчиво развивающейся системы может быть решена при условии непрерывного поступления информации о состоянии объектов литосферы, техносферы, био- и социосферы; постоянного уточнения частных прогностических решений. Это движение информации, с позиций моделирования, представляет взаимозависимый процесс, при котором общее моделирование эколого-геологической системы и частное, касающееся отдельных элементов ее, должны двигаться навстречу друг другу, с одной стороны корректируя частные модели в их связи с общей экологической обстановкой, а с другой — конкретизируя общие модели, как правило, страдающие излишней абстрагированностью от многих немаловажных факторов реальной эволюции среды. Решение подобных проблем выполняется в процессе эколого-геологического мониторинга.
Эколого-геологический мониторинг . Мониторинг как система долгосрочных режимных наблюдений, оценки, контроля состояния и прогноза изменения объекта является общенаучным методом исследования. Используется он и при эколого-геологических исследованиях в качестве метода специального.
Специфика эколого-геологического мониторинга заключается не только в системе познания объекта, но и в самом объекте исследования — эколого-геологической обстановке, которая обусловливает «геологическое» жизнеобеспечение и человека, и биоты в целом через ресурсную, геодинамическую, геохимическую и геофизическую экологические функции литосферы. Объект исследования включает в себя систему «литосфера — биота». Исходя из этого, эколого-геологический мониторинг может быть как фоновым и изучать только природную эколого-геологическую систему, так и природно-техническим, в ходе выполнения которого исследуются последствия функционирования литотехнических систем.
Специфика эколого-геологического мониторинга заключается и в его конечной цели. Последнюю можно сформулировать так: оптимизация функционирования эколого-геологической обстановки-системы.
Раздел написан при участии В.А.Королева.
Исходя из этих двух специфических особенностей, эколого-геологический мониторинг — это система постоянных наблюдений, оценки, прогноза состояния и изменения эколого-геологической обстановки-системы, проводимая по заранее намеченной программе с целью разработки рекомендаций и управляющих решений, направленных на обеспечение ее оптимального экологического функционирования и устойчивого развития. Исходя из этого, подчеркнем, что независимо от вида эколого-геологического мониторинга (комплексный — частный (поэлементный), государственный — отраслевой, региональный — локальный и др.), характера инженерно-хозяйственного освоения территории, организующих его служб, масштаба исследований главным является установление тенденций развития, трансформации литосферы и ее компонентов, их экологических последствий для человека и биоты в целом и на этой основе принятия управляющих решений.
Чрезвычайно важным аспектом в понимании сущности рассматриваемого метода является индивидуальность содержания эколого-геологического мониторинга, которая подлежит персональной разработке в каждом конкретном случае. Это творческий процесс, опирающийся на весь спектр методических разработок по данному вопросу и общую структурную схему практически любого мониторинга, содержащую блоки контроля и управления, связанные между собой каналами связи, а также блоки автоматизированной информационной системы и инженерной защиты (рис. 42); последний включает производство очищения компонентов литосферы от загрязнения.
Суть и содержание эколого-геологического мониторинга составляет система целенаправленной деятельности, состоящей из упорядоченного набора процедур, организованного в циклы: эколого-геологических наблюдений оценки состояния системы по результатам наблюдений , эколого-геологического прогноза развития системы (ITi) и управления (Уi). Затем эколо-го-геологические наблюдения дополняются новыми данными, на новом цикле, и далее циклы повторяются на новом временном отрезке Н2, 02, П2, У2 и т.д.
Эколого-геологический мониторинг представляет собой сложно построенную, циклически функционирующую и развивающуюся во времени по спирали постоянно действующую систему (рис. 43).
Основу организационной структуры эколого-геологического мониторинга (см. рис. 42) составляет так называемая автоматизированная информационная система (АИС), которая создается на базе ЭВМ. В этой связи эколого-геологический мониторинг (как и другие его виды) является особой геоинформационной системой (ГИС).
Задачами АИС эколого-геологи-ческого мониторинга являются:
- хранение и поиск режимной эко-лого-геологической информации о состоянии верхних горизонтов литосферы и ЛТС в пределах изучаемой эколого-геологической системы;
- целенаправленная постоянная обработка и оценка информации;
- выполнение перманентных прогнозов развития и состояния эколо-го-геологической обстановки;
- решение оптимизационных эколого-геологических задач по созданию системы управления ситуацией, экологически ухудшающейся по геологическим причинам.
В структуре АИС выделяются четыре основных взаимосвязанных блока (рис. 44), каждый из которых направлен на решение одной из перечисленных выше задач. Первый из них составляет автоматизированная информационно-поисковая система (АИПС), которая направлена на решение первой задачи и представляет собой базу данных, реализованную с помощью ЭВМ. В систему АИПС из наблюдательной сети поступают все первичные данные о состоянии верхних горизонтов литосферы территории или объекта мониторинга (в том числе и данные режимных наблюдений). Здесь они накапливаются в банке данных, предварительно обрабатываются, сортируются и используются затем во всех последующих операциях по эколого-геологической оценке и прогнозу состояния системы.
Второй блок АИС — автоматизированная система обработки данных (АСОД), направленная на целенаправленную обработку и оценку поступающей информации. Этот блок реализует функцию количественной и качественной обработки всей информации по эколого-геологическому мониторингу и тоже осуществляется с помощью ЭВМ.
Третий блок АИС представляет собой автоматизированную прогнозно-диагностическую систему (АПДС). С помощью этого блока решаются все вопросы по составлению перманентных (т.е. непрерывно продолжающихся, повторяющихся) прогнозов в соответствии с функциональной схемой эколого-геологического мониторинга. Этот блок также реализуется с помощью ЭВМ. Важным его компонентом является постоянно действующая модель.
Четвертый блок АИС составляет автоматизированная система управления (АСУ), направленная на решение задач по управлению эколого-геологической системой и разработку рекомендаций. Этот блок осуществляет как бы конечную цель и функцию эколого-геологического мониторинга и чрезвычайно важен. Он также практически реализуется с помощью ЭВМ.
Все четыре блока АИС связаны друг с другом и образуют единую функционирующую геоинформационную систему. Основным вопросом при организации АИС является ее информационное, техническое и математическое обеспечение, рассмотренное в работах В.К.Епишина, В.Т.Трофимова (1985), В.А.Королёва (1995), М.А.Шубина (1985), в монографии «Теория и методология экологической геологии» (1997) и др.
Уровни организации эколого-геологического мониторинга могут быть различными (рис. 45).
Подсистемы детального эколого-геологического мониторинга являются важнейшим звеном в системах более высокого ранга. Их объединение в более крупную сеть (например, в пределах города, района) образует систему мониторинга локального уровня. Детальный и локальный эколого-геологический мониторинг предназначены обеспечить экологическую оценку последствий изменений литосферы под влиянием действующего или проектируемого объекта (или комплекса объектов) соответственно на территории города, района или участка в зоне его ожидаемого воздействия. Он реализуется на стадии проекта, а для действующих объектов, не имеющих должной сети режимных наблюдений, независимо от стадии, по решению соответствующих компетентных органов.
Локальные системы, в свою очередь, объединяются в еще более крупные — системы регионального эколого-геологического мониторинга, охватывающие территории в пределах края или области, или в пределах нескольких краев и областей. Региональный эколого-геологический мониторинг предназначен обеспечить экологическую оценку изменений верхних горизонтов литосферы крупных территорий комплексного антропогенного освоения (республиканских, краевых и областных административных территориальных единиц, крупнейших территориально-производственных комплексов). Он базируется на государственных источниках информации, как правило, не дающих ответа на весь комплекс природоохранных вопросов. Такой мониторинг в общих чертах соответствует задачам оценки воздействия на геологическую среду (ОВГС) на предпроектной стадии, которая не предусматривает создание специальной региональной сети режимных наблюдений. Основная задача ОВГС на этой стадии — разработка программы совершенствования или создания новой сети режимных эколого-геологических наблюдений с учетом ожидаемого воздействия существующих или проектируемых предприятий на различные компоненты эколого-геологической системы. Строго говоря, создание и обеспечение функционирования регионального эколого-геологического мониторинга — дело соответствующих территориальных органов государственного или ведомственного подчинения.
Системы регионального эколого-геологического мониторинга должны объединяться в пределах одного государства в единую национальную (государственную, федеральную) сеть мониторинга и образовывать, таким образом, национальный уровень («мегарегиональный», по М.А.Шубину) системы мониторинга (см. рис. 45).
Системы национального (государственного) уровня эколого-геологического мониторинга являются необходимой предпосылкой для соблюдения законодательства в области охраны недр и экологии, систематического контроля за состоянием всех компонентов эколого-геологической системы, обеспечения эффективной и экологически безопасной инженерно-хозяйственной деятельности.
Подчеркнем, что система эколого-геологического мониторинга национального уровня должна входить составной частью в систему мониторинга окружающей среды России, создаваемую соответствующей Федеральной службой России. Формирование в ее рамках единой национальной сети эколого-геологического мониторинга одна из задач ближайшей перспективы развития мониторинга в России.
В рамках экологической программы ООН поставлена задача объединения национальных систем мониторинга окружающей среды в единую глобальную межгосударственную сеть — «Глобальную систему мониторинга окружающей среды» (ГСМОС или GSEM). Это высший глобальный уровень организации системы мониторинга. Её назначение — осуществление мониторинга за изменениями в окружающей среде на Земле в целом, в глобальном масштабе.
Глобальный мониторинг — это система слежения за состоянием и прогнозирование возможных изменений общемировых процессов и явлений, включая антропогенные воздействия на биосферу Земли в целом. Пока создание такой системы в полном объеме — задача будущего.
Вопросы методики эколого-геологического мониторинга здесь сознательно не рассматриваются. Это отдельная, большая и специфическая задача. Ее содержательное краткое описание можно найти в ряде работ, в частности в монографии «Теория и методология экологической геологии», 1997.
Завершая краткое рассмотрение эколого-геологического мониторинга, следует отметить, что его система синтезирует в себе множество частных методов получения соответствующей информации. Но доминирующую роль, особенно в части прогнозирования, приходится на долю ПДМ и ретроспективного анализа.